Markdown All in One by Yu Zhang
Markdown Table Prettifier by Krisztian Daroczi
Markdown+Math by goessner
Google Chrome -> print to pdf -> A4, Portrait,
234567891123456789212345678931234567894123456789512345678961
--------|---------|---------|---------|---------|---------|-
Laws and Theorems of Boolean Algebra
binary function list
nr. |
f(a,b) |
00 |
01 |
10 |
11 |
0 |
nul |
0 |
0 |
0 |
0 |
1 |
and |
0 |
0 |
0 |
1 |
2 |
> |
0 |
0 |
1 |
0 |
3 |
a |
0 |
0 |
1 |
1 |
4 |
< |
0 |
1 |
0 |
0 |
5 |
b |
0 |
1 |
0 |
1 |
6 |
!= |
0 |
1 |
1 |
0 |
7 |
or |
0 |
1 |
1 |
1 |
8 |
nor |
1 |
0 |
0 |
0 |
9 |
== |
1 |
0 |
0 |
1 |
10 |
!b |
1 |
0 |
1 |
0 |
11 |
>= |
1 |
0 |
1 |
1 |
12 |
!a |
1 |
1 |
0 |
0 |
13 |
<= |
1 |
1 |
0 |
1 |
14 |
nand |
1 |
1 |
1 |
0 |
15 |
collapse |
1 |
1 |
1 |
1 |
Use Python to proove or deny the rule according to your variant.
- x⋅0=0
- x+1=1
- x⋅1=x
- x+0=x
- x⋅x=x
- x+x=x
- x⋅x=0
- x+x=1
- x=x
- x⋅y=y⋅x
- x+y=y+x
- x(yz)=(xy)z=(xz)y=xyz
- x+(y+z)=(x+y)+z=(x+z)+y=x+y+z
- x⋅(y+z)=x⋅y+x⋅z
- x+y⋅z=(x+y)⋅(x+z)
- x⋅y=x+y
- x+y=x⋅y
- x⋅(x+y)=x
- x+x⋅y=x
- (x+y)⋅(x+y)=x
- x⋅y+x⋅y=x
- (x+y)⋅y=x⋅y
- x⋅y+y=x+y
- (x+y)⋅(x+z)⋅(y+z)=
(x+y)⋅(x+z)
- x⋅y+x⋅z+y⋅z=
(x⋅y)+(x⋅z)
- x⊕y=(x+y)⋅(x+y)
- x⊕y=x⋅y+x⋅y
- x⊕y=(x+y)⋅(x⋅y)
- (x≡y)=x⋅y+x⋅y
- x⊕y=(x+y)⋅(x+y)
- f(x,y)=x⋅f(1,y)+x⋅f(0,y)
Links:
The Bit Player 2018 - Claude Shannon - Legendas PT-BR
https://www.youtube.com/watch?v=CCrpgUM_rYc
Edward Forrest Moore
https://en.wikidat.com/info/edward-f-moore
Find Errors (proove or deny:)
https://www.mi.mun.ca/users/cchaulk/misc/boolean.htm
Shannon's theorem
https://cseweb.ucsd.edu/classes/sp17/cse140-a/slides/lec2.pdf